首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1975篇
  免费   106篇
  国内免费   12篇
化学   1425篇
晶体学   6篇
力学   28篇
数学   363篇
物理学   271篇
  2023年   17篇
  2021年   21篇
  2020年   72篇
  2019年   49篇
  2018年   29篇
  2017年   13篇
  2016年   44篇
  2015年   59篇
  2014年   61篇
  2013年   84篇
  2012年   78篇
  2011年   113篇
  2010年   52篇
  2009年   61篇
  2008年   92篇
  2007年   82篇
  2006年   69篇
  2005年   100篇
  2004年   90篇
  2003年   60篇
  2002年   44篇
  2001年   30篇
  2000年   27篇
  1999年   17篇
  1998年   26篇
  1997年   32篇
  1996年   30篇
  1995年   27篇
  1994年   26篇
  1993年   32篇
  1992年   27篇
  1991年   36篇
  1990年   35篇
  1989年   24篇
  1988年   22篇
  1987年   25篇
  1986年   25篇
  1985年   26篇
  1984年   25篇
  1983年   18篇
  1982年   18篇
  1981年   26篇
  1980年   16篇
  1979年   19篇
  1978年   23篇
  1977年   19篇
  1976年   20篇
  1975年   12篇
  1974年   17篇
  1973年   17篇
排序方式: 共有2093条查询结果,搜索用时 15 毫秒
81.
Blennolide A can be synthesized through an enantioselective domino‐Wacker/carbonylation/methoxylation reaction of 7 a with 96 % ee and an enantioselective Wacker oxidation of 7 b with 89 % ee. Further transformations led to the α,β‐unsaturated ester (E)‐ 17 , which was subjected to a highly selective Michael addition, introducing a methyl group to give 18 a . After a threefold oxidation and an intramolecular acylation, the tetrahydroxanthenone 4 was obtained, which could be transformed into (?)‐blennolide A (ent‐ 1 ) in a few steps.  相似文献   
82.
83.
This study investigates to which extent the design of electrospray ion sources influences the susceptibility to matrix effects (MEs) in liquid chromatography-tandem mass spectrometry (LC-MS/MS). For this purpose, MEs were measured under comparable conditions (identical sample extracts, identical LC column, same chromatographic method and always positive ion mode) on four LC-MS/MS instrument platforms. The instruments were combined with five electrospray ion sources, viz. Turbo Ion Spray, Turbo V(TM) Source, Standard ESI, Jet Stream ESI and Standard Z-Spray Source. The comparison of MEs could be made at all retention times because the method of permanent postcolumn infusion was applied. The MEs ascertained for 45 pesticides showed for each electrospray ion source the same pattern, i.e. the same number of characteristic signal suppressions at equivalent retention times in the chromatogram. The Turbo Ion Spray (off-axis geometry), Turbo V(TM) Source (orthogonal geometry) and the Standard Z-Spray Source (double orthogonal geometry) did not differ much in their susceptibility to MEs. The Jet Stream ESI (orthogonal geometry) reaches a higher sensitivity by an additional heated sheath gas, but suffers at the same time from significantly stronger signal suppressions than the comparable Standard ESI (orthogonal geometry) without sheath gas. No relation between source geometry and extent of signal suppression was found in this study.  相似文献   
84.
Let G(V, E) be a simple, undirected graph where V is the set of vertices and E is the set of edges. A b‐dimensional cube is a Cartesian product I1×I2×···×Ib, where each Ii is a closed interval of unit length on the real line. The cubicity of G, denoted by cub(G), is the minimum positive integer b such that the vertices in G can be mapped to axis parallel b‐dimensional cubes in such a way that two vertices are adjacent in G if and only if their assigned cubes intersect. An interval graph is a graph that can be represented as the intersection of intervals on the real line—i.e. the vertices of an interval graph can be mapped to intervals on the real line such that two vertices are adjacent if and only if their corresponding intervals overlap. Suppose S(m) denotes a star graph on m+1 nodes. We define claw number ψ(G) of the graph to be the largest positive integer m such that S(m) is an induced subgraph of G. It can be easily shown that the cubicity of any graph is at least ?log2ψ(G)?. In this article, we show that for an interval graph G ?log2ψ(G)??cub(G)??log2ψ(G)?+2. It is not clear whether the upper bound of ?log2ψ(G)?+2 is tight: till now we are unable to find any interval graph with cub(G)>?log2ψ(G)?. We also show that for an interval graph G, cub(G)??log2α?, where α is the independence number of G. Therefore, in the special case of ψ(G)=α, cub(G) is exactly ?log2α2?. The concept of cubicity can be generalized by considering boxes instead of cubes. A b‐dimensional box is a Cartesian product I1×I2×···×Ib, where each Ii is a closed interval on the real line. The boxicity of a graph, denoted box(G), is the minimum k such that G is the intersection graph of k‐dimensional boxes. It is clear that box(G)?cub(G). From the above result, it follows that for any graph G, cub(G)?box(G)?log2α?. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 323–333, 2010  相似文献   
85.
86.
Summary. The proposed method is based on an additive decomposition of the differential operator and the subsequent fitted discretization of the resulting components. For standard situations, the derived stability and error estimates in the energy norm qualitatively coincide with well-known estimates. In the case of small diffusion, a uniform error estimate with reduced order is obtained. Received August 7, 1997 / Revised version received July 15, 1998 / Published online December 6, 1999  相似文献   
87.
88.
89.
An in-tournament is an oriented graph such that the negative neighborhood of every vertex induces a tournament. A digraph D is cycle complementary if there exist two vertex-disjoint directed cycles spanning the vertex set of D. Let D be a 2-connected in-tournament of order at least 8. In this paper we show that D is not cycle complementary if and only if it is 2-regular and has odd order.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号